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1. Introduction. 
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In the  las, few years, there has been an increasing interest  i n  

the theory of different ia l  equations w i t h  retarded arguments or systems 

in which the ra te  of changeof a system may depend upon its past history. 

This is par t ia l ly  due t o  the fac t  that such equations arise i n  a na tu ra l  

manner in certain types of control problems. 

has been devuted to the  extension of known results for  ordinary different ia l  

equations to different ia l  equations with retarded arguments. 

Much of the  recent l i t e ra ture  

The present 

paper is anuther s tep i n  t h i s  direction. 

More specifically, w e  sha l l  indicate i n  w h a t  manner a pwbicular 

form of the  method of avdaging of Krylov-Bogoliubov-Mitropolski-Diliberto 

can be extended t o  different ia l  equations with hereditary dependence. 

Far ordinary different ia l  equations, t h i s  method is  w e l l  understood 

by most people who are concerned either with the computational aspects or . 

t he  quali tative theory of nonlinear oscillations. In the development of this 

method fo r  retarded systems, the basic d i f f icu l ty  l i e s  i n  the fact that 
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motions defined by the solutions of the equations cannot be described 

adequately i n  a f in i t e  dimensional smce. The proper sett ing seems t o  be 

In  an inf in i te  dimensional space and, i n  the particular formulation given 

below, in a Banach space. To the author's knowledge, Krasovskii 111 was 

the first t o  exploit such equations i n  this set t ing in  the extension of 

~ p u n o v ' s  second method. 

The extension of the method of averaging t o  d i f f e r e n t i a l  equations 

w i t h  retardation relies heavily upon the theory of l i n e a r  equations with 

constant coefficients as developed by Shimanw [2, 31 and the author 143. 

We will not give the detai ls  of the theory of linear systems, but merely 

i 

apply the results t o  our problem, proceeding from its application t o  

specific examples t o  the more general results. 

2. Notation. 

]Let us digress fo r  a moment and discuss the equation 

represents the right hand derivative] from the point of v i e w  that is of 

interest  t o  us in this paper. If x is i n  Rn (the n-dimensional Euclidean 

space), f(t,  x, y) is continuous i n  its arguments for a l l  t, x, y, and 

q, is any continuous function mapping the interval [-r, 01 into Rn, then 

f o r  aqy to one can show that there is a fknction x(to, c p )  which is  defined 

on an interval  [to - rr to + A), A > 0, coincides w i t h  cp on [to - r, to] 
and satisfies (2.1) for  t L to. 

w i t h  i n i t i a l  value cp & to. Furthermore, if f(t, x, y) is locally 

We c a l l  such a function a solution of (2.1) 

i 
1 

c 

I 
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Lipschitxian i n  x, y this solution is  unique and depends cmtinuously upon 

to and 8. If we find another solution w i t h  i n i t i a l  value $ at td 

then the corresponding solutions might behave as i n  f ig .  1. 

The w,fqueness property asserts that i f  two solutions coincide on 

any interval of length r3 

4x0 dist inct  solutions may intersect many times on any interval of length r. 

T h i s  last remark suggests that the s ta te  of time t 

by (2.1) should be the collection of values of the solution on the interval 

[t - r, t], or the res t r ic t ion  of x t o  the interval [t - r, t ] .  W e  

designate this restr ic t ion by xt (see Fig. 2) . 
be the space of continuaus functions mapping the interval 

then they must coincide for  all future time, but 

of a system described 

If we l e t  C = C( [a, 01, R") 

I 
[-r, 01 into 

i 

Rn wlth the  uniform topology, then a solution x(to, 9) 

f o r  each fixed t h to a mapping of C into C j  namely, the ma;pPillg 

xt(to, 9). 

(t, xt(td cp)) i n  R x C to S t < to + A, 

we assume solutions defined f o r  all t h to - r; that is, 

of (2.1) yields 

Trajectories of (2.1) are then defined as the  collection of points 

as indicated i n  Fig. 3. Hereafter, 

A = + 00. 

The above definition of trajectories of (2.1) y ie lds  a situation which 

is analogous t o  ordinary differential equations. 

rea l ize  that the si tuation here is  more colqplicated. 

i n  general are only defined t o  the right of to and the napping xt is  a 

s m o o t h i n g  operator i f  r > 0. In fact, for  sny td the mapping 

"%(to. cp) takes closed bounded subsets of C in to  compact subsets of C. This 

shuws that x (t 9) cannot be a hmeomorphism fo r  r > 0 even if it is 

one-to-one. 

However, the reader should 

First of all, trajectories 

t o r  
secondly, the mapping xt(td 9) need not be one-to-one even when 
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the uniqueness property holds. In  fact, f o r  the scalar equation 

the solution x(0, 9) corresponding t o  an i n i t i a l  function cp with q(0) = 1 

is such that xt(O, 9 )  =: 1 for t I r. Therefore, a subset of C( [-r, 01, R) 

which is the translate of a subspace of codimension l i s  such that the 

corresponding t ra jector ies  all coincide a f te r  r units of time. 

~f we l e t  F(t, 9) be a M c t i o n a l  defined on LO, w) x c i n t o  R ~ ,  

then a rather general hereditary functional-differential equation can be 

defined as 

where xt is the  rest r ic t ion of x t o  the interval [ t  - r, t ] .  The 

discussion below is concerned w i t h  these more general equations, but we 

devote much of our time t o  more specific types. 

certainly more general than (2.1) and certainly include (2.1) with the functional 

F defined by 

Equations (2.2) are 

3. A convenient coordinate system. 

In this paper, w e  are interested i n  the oscillatory properties of 

perturbations of l inear equations with constant coefficients. 

different ia l  equptians experience has shown an understandin8 of oscil lations 

In ordinary 

i 



C 

d 

in perturbations of l inear equations with constant coefficients is m o s t  

easily accomplished by the introduction of a coordinate system which exhibits 

in an explicit  manner the behavior of the unperturbed equation on the 

subspaces which correspond respectively t o  the eigenvalues which positive 

real parts, zero real p a r t s  and negative real parts. In this section, we 

indicate hcrw this same end can be accomplished for hereditary f’unctional- 

different ia l  equations. 

We w i l l  first discuss the procedure for the s-le equation 

(3.1) C(t) = e ( t  - r), ar = 1r/2, r > 0, 

and the perturbed equation 

where xt denotes the restriction of x t o  the interval [t - r,, t ] .  Iater 

we state a result for  a more general equation. 

If a fundion eAt is a solution of (3.1), then A must satisfy 

the characteristic equation 

- A r  (3.3) A = - c ? e  

Since ar = T/2, 

negative real parts except for two which are equal t o  ,+ ia. 

every periodic solution of (3.1) m u s t  be of the form 

it is not difficult  t o  show that  the roots of (3.3) all have 

Furthermore, 

(3.4) a s i n  art + b COS at 
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for sane constant a and b and every solution of (3.1) is exponentially 

asynptotic t o  a function of the  form (3.4) as t +CO. 

Row let  us interpret these remarks i n  the space C. Let  u be a 

periodic solution of (3.1). Then f o r  -r s e s 0, 

= (a cos at - b s i n  &) s i n  + (a s i n  at + b COS &)COS 

where we have defined 

and yl, y2 are the  corresponding coefficierrts of these functions. 

NOW ql, cp2 are l inear  independent elements of C and thus generate 

a two-dimensional l inear  subspace P of C; that is, 

P = IT E c: Q = -1 + wp a, b real]. (3.6) 

what t he  abuve computations have sham is that a l l  of the periodic solutions of 

(3.1) nnmt l i e  i n  P. 

exponentially as t 3 0 3 .  The paths i n  P are closed curves and the motion i n  

t h e  is described by yl(t), y2(t). 

ordinary different ia l  equations 

Also, it can be sham that any solution of (3.1) approaches P 

Notice that yl(t), y2(t) sa t i s fy  the 

R 

1 

i 
i 

? 

, 
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If we could find another subspace Q of C (which necessarily 

must be in f in i te  dimensional) which is positively invariant under the 

solutions of (3.1) and complementary t o  P i n  the sense that for  every 

i n  Q such that q, in C there exis t  unique elements cp i n  P, 

9 = q’p + qQ# 
% P 

then p i c to r i a l ly the  m o t i o n s  i n  C would be as shown in 

Fig. 4. 

The existence of such a space Q follows *om the  general theory of 

l inear  operators since 

crperators U ( t ) ,  t 2 0, 

is the  solution of (3.1) with initial function 9 at 0. On the  &her hand, 

if Q can be described analytically, then  we w i l l  be i n  a position t o  

introduce a coordinate system i n  

extending perturbatioa theory. 

P i s  an eigenspace of the semigroup of bounded l inear  

defined on C by U(t)cp = ut(cp), where u(g) 

C which w i l l  provide a natural means of 

This is  accomplished by means of the equation 

“adjoint” t o  (3.1) with respect t o  the bi l inear  form 

defined for  all $ i n  C( [0, rIt R) and q, i n  C( [a, 01, R). This bi l inear  

form has the property that  if 

and u is a solution of (3.1) defined f o r  t 2 0, then 

v is  a solution of (3.7) defined fo r  s B 0 

(vt, ut) = constant fo r  t 2 0. 



I 

i 

and 

Thep a s-le computation shows that the matrix 

If A is a C O l m  vector of dimension k whose elements ai 
belong t o  C([O, rl, R”, 
elements bl belong t o  e([-r, 01, Rn), then we let (A, B) denote the 

h X m  matrixwhose (ia J )  th elemext is given by (alr bJ). 

and B is a row vector of dimension m whose 

-tion (3.7) also has two linearly independent periodic solutions 

sin a 6, cos a s defined for s i n  (-03, m). 

C([O, r1, R) by 

Define ql, q2 in 

and 2% IS nonsingular. It i s  convenient t o  define 

i 

, 

since 

* 
(Y  a @) = I, the identity. 
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We are now in a position t o  introduce a coordinate system in C and 

define the space Q camplemntary t o  P. In fact, for rrsy 9 in C we l e t  

which gives a unique decomposition of every el:  cp i n  C. The subspace Q 

cap1ementm-y t o  P i s  defined by 

* 
Q =  &p in C: (S! , 9)  = O l e  

_ _  - - _  - 

For the  integra representation belowa it is necessary t o  extend t he  definition of 

Q t o  piecewise c0lrtimm.s functions. rt is clear that this is possible and OW 

decomposition is yalid i n  this larger space. Heresfter, Q w i l l  denute this set. 

If x ig a solution of (3.2) with i n i t i a l  value cp at 6, d in (-oo,oo), and 

then ylt), Z* must sat isfy 

where 
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3 r  a. are in Q, u($) is  the solution of (3.1) with init ial  value t at 0, 

X&e) = 0, =r S e S 0, X&O) = I, the identity. 

there a.re positive KI 01 such that 

~f 5 is i n  Q, then 

This relationship a resses  more precisely our s tab i l i ty  property of the set  

P mentioned before. 

let us see what t h i s  coordinate is  l ike f o r  the general linear 

equation, 

where q is  an n x n matrix whose elements a r e  r e a l  Pmctions of bounded 

variation, and the  peSurbed equation 
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We wish t o  indicate haw a coordinate system can be introduced into 

a way 88 t o  obtain a s e t  of equations equivalent t o  (3.14) which is of the form 

(3.11) with ut(+) 

eigenvalues which coincide with the characteristic values of (3.13) which have 

real parts 2 0. 

equation 

C i n  such 

satisfying (3.12) and the  corresponding matrix B having 

The characteristic values of (3.13) are the roots of the 

and t o  any characterlstic value, 

form e b for some b and all t i n  (-=, m). 

A, there i s  a f3Ol~b i011  of (3.13) of the 
xt 

AB is t o  be suspected from the previous discussion, a basic role is  

played by the equation* 

"adjoint" t o  (3.13) with respect t o  the bilinear form, 

(3.17) 

' I  

defined fo r  all $ i n  C ( [ O ,  r] ,  Rn), cp i n  C([-r, 01, Rn). The 

characteristic values o f t h e  adjoint  equation are the roots o f t h e  equation 

(3 18) 

* If A is a matrix AT denotes the transpose of A. 



and t o  each such rout, 

e% for 8me constant vector b and all 8 

the solutions of equations (3.15) and (3.18) are the  same. 

X, there i s  a solution of (3.16) of the form 

i n  (-00, 00). Notice that 

Ehrppose X l,...,\ are the characteristic values of (3.13) w i t h  

real par ts  B 0. There are only a finite number; say mi of l inearly 

independent solutions of (3.13) of the form Cz1 pj(t)eAjt w h e r e  the p 
j 

are polynomials. Let @ = (q,. . . ,qm) where ql,. . . , 'p, swe the 

restrictions of these functions t o  [-r, 01. Similarly, there are only m 
-Xjt  

linearly independent solutions of (3* 16) of the form GZl qj( s)e  w h e r e  

*m the qJ are polyndUs.  Let Y = col  ($l,...,lJlp) where $l,.m. 

the rest r ic t ion of these functions t o  [O,  r]. 

It follows directly from the differential  equations that there is a 

square m a t r i x  B With only the eigenvalues \,...,\ such that 

Furthermore, one can show (see Hale [4]) that the matrix (Y, a) is 

nonsingulsr and, therefore, by a change of the basis Y, one can take 

. 
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(1, 4) 

0,  Y as ab- applied t o  (3.14) yields an equation of the form (3.fi)  with 

Ut($) 

t o  be the identity. Finally, the transformation (3.10) w i t h  

SatiSfylng (3.12) and the matrix B given by (3.l.9). 

4. Perturbation theory. 

It va8 indicated in  the previous section that there is a transformation 
- 

= @At) + zt, xt i n  Q, which takes the general system (3.14) into an "t 
equivalent system of the  form 

i 

where 9 =ab + $, i n  Q8 the  eigenvalues of B have nonnegative real 

parts, u(9) is the  solution of (3.13) with i n i t i a l  values cp at 0 and 

EQuations (4.1) are now i n  a form which is very similar t o  that which 

I s  encountered in the  theory of oscillations i n  ordinary differential  equations. 

One can show that cmy solution of (4.1) which is bouoded on (-00, w) 

of such a nature that  zt = O(E) 88 

based upon an approximation procedure which can be justif ied t o  be correct by 

investigating only the terms of order E, then the basic problem lies i n  the 

investigation of the  ordinaq differential  equation 

must be 

E + O .  Consequently, if our analysis is 



: 

i 

i 

The analysis of (4.2) is well uaderstood and usllally proceeds by the in- 

troduction of convenient combinations of polar coordinates and rectangular 

coordinates and the applioation of averaging procedures and successive 

approximat ions . 
For simplicity, let us make the assumption that a l l  the characteris- 

t i c  values of' (3.13) have nonpositive real parts. Then B in (4.1) has 

all eigenvalues purely imaginary and a combination of' polar and rectangular 

changes of coordinates in the components of y 

section 5 fo r  the types of coordimtes involved) leads t o  a set of equations 

CY * *  fom 

(see the exampks i n  

- 
where 5 is a p-dimension vector, p is a q-dimensional vector, 5 
is an element o f t h e  mmch space C. The vector d is a constant vector 

with positive compnents and the functions 0, R, F a= multiply periodic 

i n  tbe vector 5. 
Assume that the functions e, R, F with arguments t, 5, p, hsve 

continwlls second derlvstives with respect t o  5, p, and are almost 



pertodic in t uniformly with mspect t o  (I, p, i n  ~ome set. ht 

f + %  = (tl + T, ..., + r )  3, 

(4.4) 

I s  Independent of t, (I. We define the averaged equations associated with 

(4.3) to be the eq-tions 

Hotice t h a t  the averaged equations (4.5) a= obtained f r o m  R(t,  t, p, 0) 

and, therefore In a specific problem, they ar ise  from an investigation of 

the onllnary different ia l  eqwtion (4.2). 

!L%eorem4.1. If’ system (4.3) sat isf ies  the conditions enumerated above and 

if there exists a vector po such that Ro(po) = 0 and the eigenvalws of 

the m a t r i x  &to(p,)/ap have nonzero rzal parts, then there exists an eo > 0 

and functions g(t, (I, e), h(t, E), 0 E ed g In Rq, h in C, 

g(t, c, 0) = Po’ 

p?riodic i n  t such that the s e t  Sel 0 S E d eo, defined by 

h(t, b 0) = 0, multiply periodic i n  (I and almost 



i 

is an integral  xmIfold of system (4.3). If the functions 8, R j  F 

em? independent of t (or periodic i n  t of period a)), then the f’unc- 

t ions gJ h are independent of t or periodic i n  t of period a). 

-more, if a l l  eigenvalEs of aR,(po)/ap have negative real psrts, 

BE 

a positive real Part, then SE is unstable for 0 < E 5 

is asymptotically stable f o r  0 <E:  S eo and if one eigenvalue has 

lk alerely give an indication of the proof of this theorem since it 

I s  so analogoue t o  the proof for the case o r  ordinary different ia l  equa- 

t ions given i n  Bogoluibov and Mitropobki [rl and f ~ r l e  [61. 

In (6, Ch.. 121, it is shown that there i s  a function w(t,  (, p, E), 

multiply periodic i n  C and almost periodic i n  t such that  the trans- 

r o m t i o n  

applied t o  the equation 6 = E R(t ,  c, p, 0) ylelds a new equation of the 

t o w  b = E ~ ~ ( p )  + E R l ( t ,  s, p, E) *ere %(t, s, p, E) is zero for 

E = 0. Consequently, if this transformation is  applied t o  (4.9, w e  obtain 

a system of the form 
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where 5, F1 are the same types of functions as €9, F and 

RJt, e, P I  0) = 0, q t , e , p , o , a  = 0, IRJt,r,p,F+) = R2(t,S,P,T,41 

415 - fo r  some constant K and p, 3 i n  a bounded set. 

One now proceeds i n  a manner completely anslogom t o  that given i n  

61, [6] t o  show tha t  the functions g, h mentioned i n  the theorem are the 

fixed points of an integral  opelator. I;he s t ab i l i t y  of the integral  mani- 

fold m u s t  be investigated separately and is  easily supplied using the 

idea6 developed i n  [8] i n  connection with a saddle point for functional- 

differential equations. 

As in [51, [61, one can also prove 

Theorem 4.2. 
periodic solubion p = po(t) of period T such that q-1 of the characteris- 

tic exponents of the associated l inear  variational equatione have nonzero 

real parts. Then there exists an eo > o and functions g(t, c, q., E), 

h(t, c, $, €1, 0 P E 

PO(*), 0 S q d T, h(t, 5, 9, 0) = 0, multiply periodic i n  -5, pefiodic 

Suppose the avereged eqmtions (4.5) have a nonconstant 

Eo, g i n  Rq, h i n  C, g(t, c, $, 0) = 

in $ of period T and almost periodic i n  t such that the se t  SEI 

0 d E B defined by 

is an integml manifold of sptem (4.3). IY e, R, F aw independent of 

t (or periodic i n  t of period a), then the functions g, h are 



I 
independent of t (or periodic in t of period 0) .  Furthermore, the 

stabil i ty properties of Se a m  the same as those of the periodic 

solution po(t) of (4.5). 

We m w  S t a t e  some impoz%arrb comuSries of these theorems before 

turning t o  specific examples. Consider the equation 

1’ . 5 )  &(t) = E f ( t ,  5) 

&re E > O  is a parameter, f(t, 9) is a h s t  periodic in  t u n i f o n ~ ~ ~  

with respect t o  in some subset of C([-r, 01, Rn), and has a con- 

tinuous second Fmcdt derivative u i th  mspect t o  cp L e t  

(4.7) 

Halamay [7] has discussed, for small E, 

t b  S o l ~ 1 0 ~  [on the interval (0, .-.)I, 
%ions of (4.6) fo r  the case i n  which the retardation interval  is of order 

E. We now show tha t  Theorems 4.1 and 4.2 imply that his results and even 

more are valid without any restriction on the retardation interval. 

fsct, we can prove the followia@; two theorems. In the statement of these 

theorems, y sometb~es denotes a vector in n-dimensional Euclidean space 

and sometimes a vector of constant functions in C( [-r, 01, Rn), 

is clear fmm the context which meaning is implied. 

ae (4.6) are then defined t o  be the ordinary different ia l  equstion 

some of the relationships between 

of 2 ( t )  = Ef0(Xt) EL& the Bo~u- 

In 

but It 

The averaged eq-tions 

i 
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!Cheorem 4.3. 

yo 

If the averaged equations (4.8) have an equilibrium 

point 

equations has no eigenvalues on the imaginary axis, then, f o r  E 

ciently small, (4.6) has a unique a h o s t  periodic solution x = g(t, E) 

in a neighborhood of x = yo, g(t, 0) = yo, and the stability properties 

of g a m  the same as the stabil i ty properties of yo. 

such that the matrix of coefficients of the l inear  variational 

suffi- 

Theollern 4.4. 

y = y(')(t) of period T, 

n-1 of its characteristic exponents not on the imaginary axis, then, for 

E s\rfficiently small, there exists a function g(t, c, E )  i n  C, almost 

periodic i n  t uniformly with respect t o  5, periodic i n  f of period 

T, dt, f, 0 )  = Yf ( 0 )  8 Y{ (*)(e)= y(o)(S + e), -r 3 e s 0, such thst the 

surface i n  C x (a, m) defined by 

IX (4.8) has a nonconstant periodic solution 

such that the l inear  variation equation has 

5s an integral  manifold of (4.6). Furthermore, SE is d q u e  i n  a neigh- 

borhood of 8, = ((9, t ) :  c p =  y5 ('), 0 5 f 5 T, -0g < t C m )  and bas 

the sam? s t ab i l i t y  properties 8.8 9,. 

t, then g is independent of t, and i f  f is periodic i n  t, then 

g isperiodic i n  t w i t h t h e  sameperiod. 

33' f i n  (4.6) is izidepiitlent af 
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I 
! 

It0 Show that these results are consequences of Theorems 4.1 and 

4.2, we proceed as follows. For sny q in  C([-r, 01, Rn), the de- 

composition 

q = b + %  

is -que if b is the constant function whose value is do). E, in 

(4.61, 

x* = y(t) + z* 

then 

for sane positive K, a. 

since %c;i;> = o for all 

of (4.3) and one' obtains Theorems 4.3 and 4.4 from Theomms 4.1 and 4.2. 

This last relation is obviously true i n  this case 

ami t 2 r. System (4.9) is a special case 

5. Some specific examples. 

Ut us first discuss the oscillatory properties of equation (3.2), 

! nsmely, the equation 



! 

. 
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(5.1) 

2(t) = -aDL(t - r) + E f ( t ,  xt) 

ar = K/2, E >o. 

W bave seen in section 3 that this equation is equivalent t o  the 

system (XU), that is, the eqwtion 

(5.2) 

(5.3) 

y = 6,. P2 = -0 1 
2 

l+; 

If we let 



, 
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where It = f(t, w + ;;t) ami y is given i n  (2.3). 

U the function f is almost periodic i n  t udf'onmly with res= 

pect to the other arguments, then  the avemged equations f o r  this parti- 

cular case are 

(5.5) 

where we always assum t h a t  this l i m i t  is independent of t ,  5. 
A o t i c e  that equation (5.3) are the same equations that are obtained 

by introdwing the pohr coordirate transformation (5.3) t o  th ordinary 

differential eqmtion 

and then tabing the average. 

Iet \IS m w  : - 8- specific Arnctions f i n  (5.1) t o  show that 

important inf0rIEi 3 obtained by t h i s  method. 

3 2.1(Pinney L5] f = - p(t-1) + BX (t-I), 01 = r /2 ,  r = 1. 

Sime x(t-1) = O(-l)y(t) = -y,(t) = - sin(?rfi), it is easy t o  

. check thst the average Ro(p) in (5.5) is 



where K is a positive constant, and the averaged equations (5.5) a= 

XP y@ > 0 the averaged equstion has an equilibrium point po = 4-6 
which I s  asymptotically stable if r > 0 and unstable if' y < 0. Con- 

seqilently, for E > 0 and silfficiently small, Theorem 4.1 asserts for 

rp > O the existence of functions g(fJ 4 ) h( E )  (these functions 

are 9 !?pendent o f  t since f is), g(fJ 0) =mJ h(cJ 0 )  = 0, 

F: i n  3 of period */a such that a€ = ((t, cJ pJ 3: 
P = 54.<J € 1 1  9' h(EJ €1, - OD < t < aoJ o s f s a /a )  is an integral 

. 

- 
w o l d  Of (5.4) which i8 stable  for 

implies thBt<=t ( tJ  Cp): (9- 

< 0. 

(q cos a{)@;(c, a )  + h ( f ~  E), 

FKm (510)  and (5.3)J this 

a( 
0 d f i &/a) I s  an integral wnifold of our origiml system. 

cylinder Te in R )c C obviously correspmds to  a periodic solution of our 

system which is stable if r > 0 and unstable if y < 0 and has an SDpli- 

Such a 

tule approximately equsl 

by solving the equstion 

t o  m. The approximate period Q) is  obtained 



! 
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. 

It is interesting t o  note t h a t  the second order system (5.6) for  

this example is actually equivalent t o  a second order scalar differential 

equEtion. 

weq\dvalentw linear second order equation i n  the 8eme of I(iylov-Bogoliubov. 

This should in turn lead t o  methods which will s e l a  important information 

abut equations with retardation when E is not small -- describing func- 

tions, etc. 

The method of averaging should then allow one t o  obtain an 

So far, this bss not been exploited. 

wqle 5.2. Consider the equation 

(5.7) f(t) = - Q + €q(t)k(t - 1)(1 - € X 2 ( t ) )  

a r e  q is almost periodic i n  t. 

This I s  a special case of (5.1) with a = 7r/??, r = 1, and 

f = x2(t)x(t - 1) - q(t)x(t  - 1) + q( t )xS( t )x ( t  - 1). 

using the fact that 

x( t )  = @(O)y(t) = y,(t) = - p COB (Td2) 

x(t-1) 5: @(-l)y(t) = - y,(t) = - p Sin(Tg2) 

the averaged eqmtion (5.5) becomes 



provided 

Consequently, if > 0 and E > 0 is slrPficiently smal l  there exists 

a stable integral  manifold of solutions of (5.7) whose parametric repre- 

sentation i n  C is almost periodic i n  t and periodic i n  and for  

E = 0 is givenby 

3?f q(t) is independent of t, then the parametric representation 

of %be integral manifold 5s independent of t and o m  obtains a nonconstant 

periodic solution of (5.7) withamplitude approximately m. 
has discussed periodic solutions of (5.5) with q independent of t and 

even more general equations. 

Jones [W] 

Example 53. Consider tbe system 

(5.8) 
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where a > 0, r 2 0, E > 0 are parameters. For r = 0, this  is 

van der Pol's equation. 

gate the existence and s t ab i l i t y  of l imit  cycles of (5.8) for 

By using the preceding theory, we will  investi- 

small. E: 

2 If %, $ 81-2 the vectors i n  C([-r ,  01, R ) defined by 

and @ = (5, p2) then the transformation 

applied t o  (5.8) yields the equivalefit system 

L 

xt = u (F) + E  t-cr 

where \(:) has the same meaning as i n  the previous sections and F is a 

two-vector whose specific form is of no particular interest  here. 

If we introduce the polar coordinates 



d 

m 

. 
m- 

h t o  (5.9) and set Ft = 0, we obtain 1 
? 

f 

The averaged equation is 

1 2 6 = p [l - p(l - g cos 2crr)p I. 

9his equation has an equilibriuu point po = m, r = 1 - (COB -)/2 > 0 

for every value of r and the linear variational equation relative to po 

IS b = - &p. 

existence of a stable periodic solution of (5.8) with amplitude approxi- 

Consequently, Theorem 4.1 implies as i n  Example 5.1 the 

For pwsical examples of retarded equations and the importance of 

oscillatory phenomena, see Chapter 21 of N. Minorsky [ll]. 

i 
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